

## CHARACTERIZATION OF COMPOSITE AND METALLIC BIPOLAR PLATES

<u>Dr. Peter Beckhaus</u> ZBT GmbH (fuel cell research centre), Germany

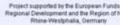


International Conference + Exhibition Vancouver, British Columbia, Canada Vancouver Convention + Exhibition Centre May 15 – 18, 2011

Dr. Peter Beckhaus Division fuel cells and systems

Telefon: +49-203-7598 3020 Telefax: +49-203-7598 2222

www.zbt-duisburg.de


p.beckhaus@zbt-duisburg.de

ZBT GmbH Carl-Benz-Straße 201 47057 Duisburg Germany











### ZBT Zentrum für Brennstoffzellen Technik is

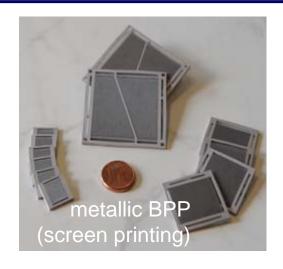
- Independent R&D service provider
- Dedicated to hydrogen and fuel cell technology
- ~ 100 full time employes
- Focussing on applied technologies

## Core technologies and services

- Bipolar plates
- Fuel cell stacks < 3 kW
- Fuel reforming
- Fuel cell system technologies (H<sub>2</sub>, reformate)
- Production technologies
- Testing for certificates (accredited testing lab)






## Types of bipolar plates – ZBT technologies













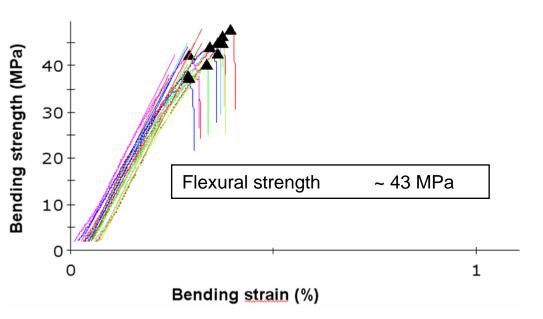
Gräbener Maschinentechnik GmbH / ZBT

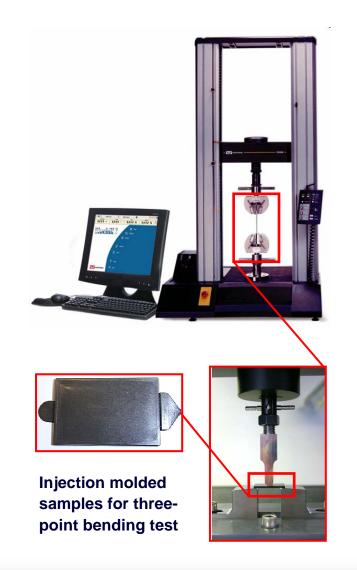


## Bipolar plate requirements – US Department of Energy

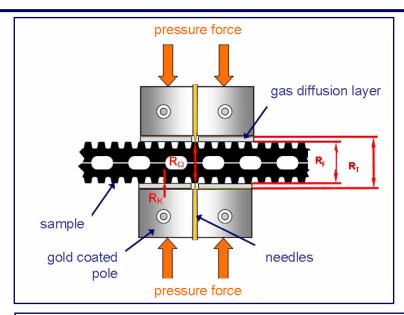
| rements for PEM fue                                                                                           | el cell                                                                                                                                                                     |                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Unit                                                                                                          | Value                                                                                                                                                                       |                                                                                                                                              |
| $m\Omega$ cm <sup>2</sup><br>cm <sup>3</sup> (cm <sup>2</sup> s) <sup>-1</sup><br>kg/kW<br>g cm <sup>-3</sup> | <20<br><2.10 <sup>-6</sup><br><1<br><5                                                                                                                                      | being established  established  established  being established  established  being established  being established  established  bestablished |
|                                                                                                               | Unit  MPa  MPa  S cm <sup>-1</sup> μA cm <sup>-2</sup> mΩ cm <sup>2</sup> cm <sup>3</sup> (cm <sup>2</sup> s) <sup>-1</sup> kg/kW  g cm <sup>-3</sup> W (m K) <sup>-1</sup> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                         |

<sup>[1]</sup> Antunes, R.A., Oliveira, M. C. L., Ett, G. et al. 2010. Corrosion of metal bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy 35 (2010) 3632-3647

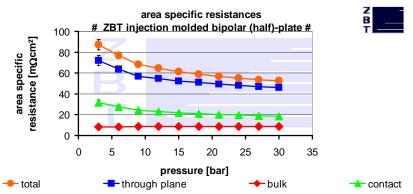




## Flexural and tensile strength – method of measurement

### **Determination of mechanical characters:**


- Three-point bending test for flexural strength
- Tensile test for tensile strength is being established

### 3-point bending test of ZBT injection molded material for LT application






### electrical conductivity / contact resistance – method of measurement

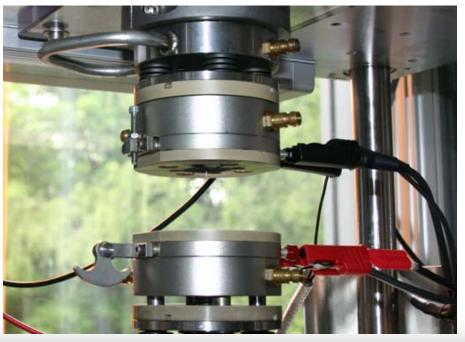


"Gaining resistive pressure dependent surfaceand bulk-information in the same measurement."

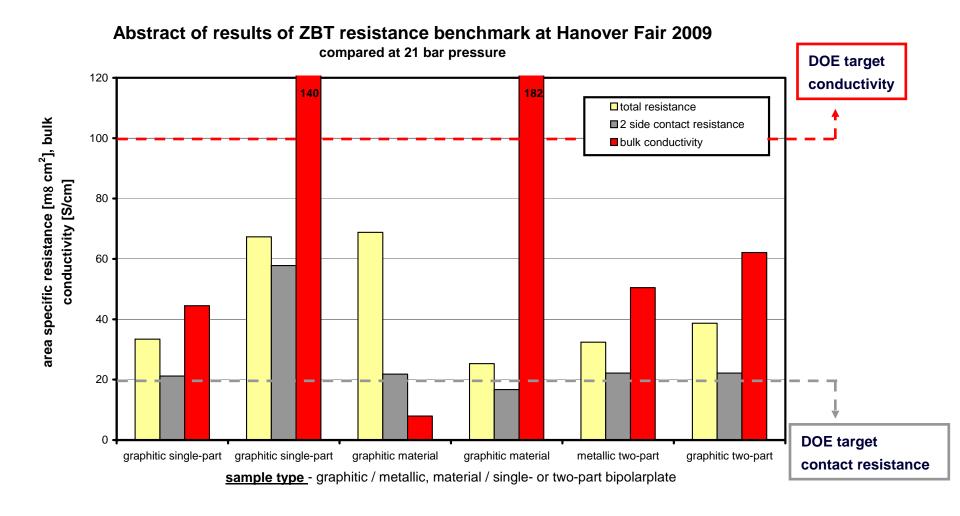


#### measured resistance:

$$\bullet R_{total} = 2 R_{GDL}^+ + 2 R_{contact}^- + R_{bulk}^-$$


 ${}^{\bullet}\mathsf{R}_{\mathsf{bulk}}$ 

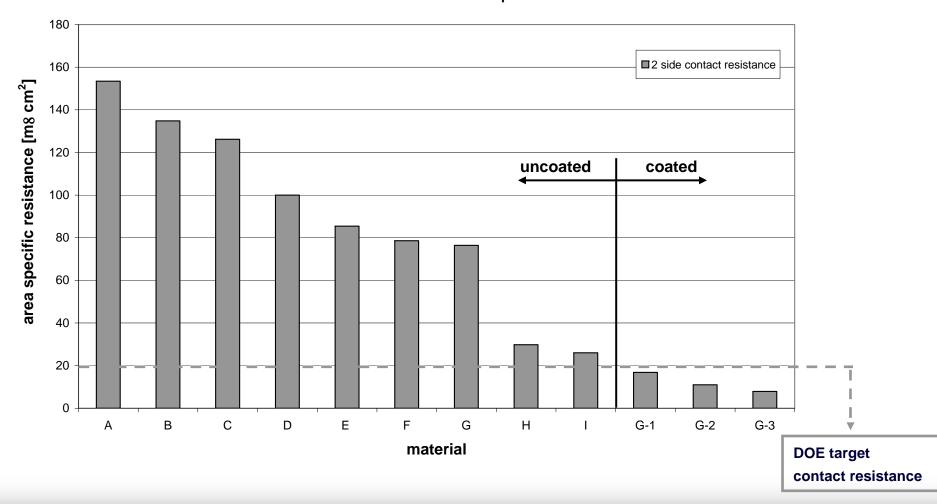
 $^{+}(R_{GDL}$  determined prior to measurement)


### calculated resistance

$$\bullet R_{forward} = R_{total} - 2 R_{GDL}$$

$$\bullet R_{contact} = R_{forward} - R_{bulk}$$




## electrical conductivity / contact resistance – results



## electrical conductivity / contact resistance – results

### area specific resistances at 21 bar pressure

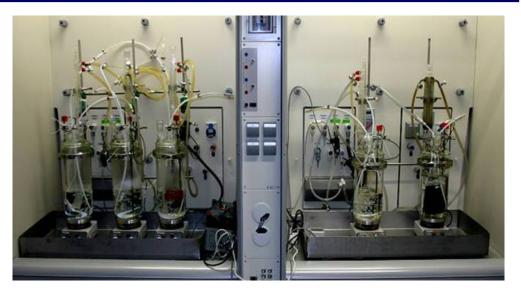
uncoated and coated metal samples





## Immersion test – method of measurement

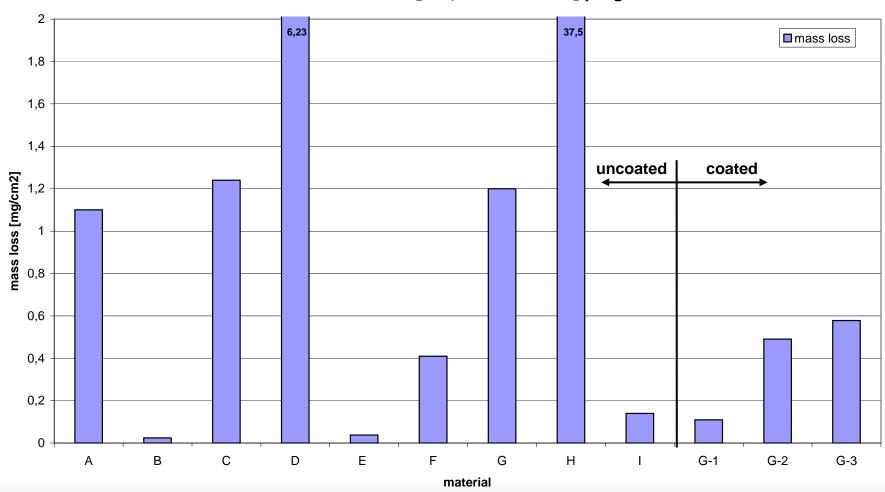
# Accelerated ageing of PEMFC components (bipolar plates, gaskets) in fuel cell simulating environment.


- dest water / sulphuric acid / phosphoric acid
- temperature 40 − 80°C
- gas purge (air, hydrogen)

### Ageing characteristics of samples:

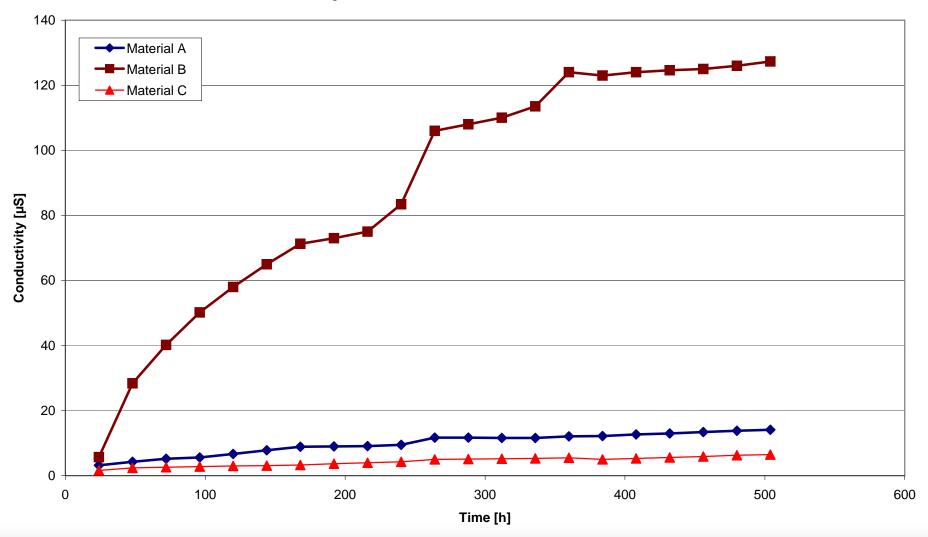
- sample mass
- sample thickness
- roughness / waviness
- modulus of elasticity
- nano structure (REM)

### Ageing characteristics of soaking liquid:


conductometry






"Potentiostatic and potentiodynamic voltammetry is being established for determination of corrosion restance."

## Mass loss of uncoated and coated sheet metal (0,1 mm) 4 weeks in 1.0 M H<sub>2</sub>SO<sub>4</sub> at 80°C and O<sub>2</sub> purge



### **Conductivity of immersion liquid**

3 elastomeric gasket materials in distilled water for 500 hours at 80°C



### Determination of density:

- Gas Pycnometry (Quantachrome, Ultrapycnometer 1000)
- Measurement referring to Boyle-Mariotte
- Using He as displacement gas
- Dimension of measuring chamber Ø 49 mm x 75 mm
- Measuring at standard temperature (25°C)
- Averaging 5 measurements

"Used as quality assurance tool for compound material developement."







Calibration spheres

## Thermal Conductivity - method of measurement

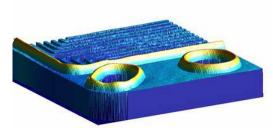
### Is being established

- Determination of thermal conductivity
- "Measurement of through plane- and in plane thermal conductivity of anisotropic materials."
- Determination of heat capacity
- Determination of temperature conductivity

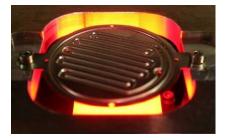
"To be used as quality assurance tool for compound material development."



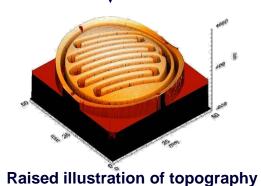



"Hot disk"- thermal conductivity measuring device

### 3D-Scan (FRT, MicroProof-TTV)


Determination of topographical deviation




**Measurement setup** 



Screen printed sealing on compound bipolar plate



Sheet metal bipolar plate



### Contact angle measurement



#### Method

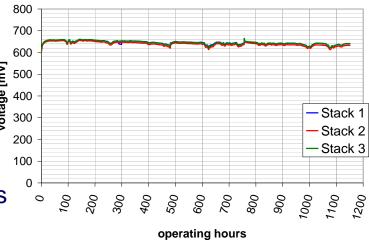
| Material | Surface preparation | Laplace -<br>Young | Tangential |  |
|----------|---------------------|--------------------|------------|--|
| 104 St   | untreated           | 108,7°             | 114,8°     |  |
| 104 St   | treated             | 117.4°             | 124.7°     |  |

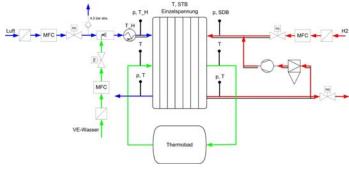


## Long-term testing of short stacks / cell components

The test rig consists of three identical testing places. It is designed to compare small differences between the three setups respective stack components or operating conditions.

Testing goals: Qualification and comparison of


- stack components (gaskets, bpp materials etc.)
- media supply, control strategies, BOP components


Test setup (standard setup)

- 3 short stacks (5 cells) in parallel
- H<sub>2</sub> recirculation, (no) cathode humidification



### average voltage of 3 x 5 cells with a dry cathode supply



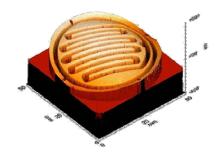


- ZBT has developed graphite based and metallic bipolar plate technologies since
   2002
- A large bandwidth of qualification procedures and technologies have been established for bipolar plates and materials
- Services are being offered for industry and science



Electrical conductivity

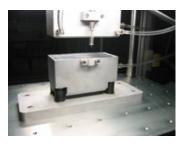



Mechanical properties



Material density




Heat conductivity



3D-Topography- and thickness



Optical inspection (Stereo-microscope)



Force-deflection / Stability



Leaching tests / In-Cell-Tests

- State of Northrhine Westfalia and European Union for supporting
  - ZBT and the initial R&D regarding bipolar plates
  - Project "NETZ"
  - Project "HiperLoco"
- Bundesministerium f
  ür Wirtschaft supporting
  - Lebensdauerprognose 03ET2006A
  - Projects of Industrial Gemeinschaftsforschung regarding bipolar plates
- Bundesministerium f
  ür Bildung und Forschung
  - Project CarboPlate
  - Project MetallBip
- Our R&D partners
- The team at ZBT (Thorsten Derieth, Lars Kühnemann, Claus Irsa, Sebastian Brokamp and many others)