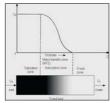
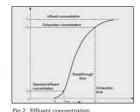
Design of a Mathematic Model for the Calculation of Breakthrough Curves for **Desulphurization Units**

DUISBURG

R.Witzany *1, M. Dokupil1, A. Heinzel1,2

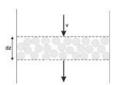
¹Zentrum für Brennstoffzellen Technik ZBT gGmbH, Germany

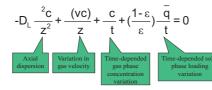

²University of Duisburg-Essen, Institut für Energie- und Umweltverfahrenstechnik, Germany r.witzany@zbt-duisburg.de www.zbt-duisburg.de


1. Introduction

- Hydrocarbons are primary energy carriers and contain sulphur components as a result of their
- Within the reforming process sulphur components poison the incorporated catalysts, so the
- sulphur components must be removed from the hydrocarbons using a desulphurization unit. For a detailed design of desulphurization units with adsorbens the knowledge of the adsorption behaviour and a suitable calculation tool is require.

2. Adsorption


- Adsorption is a process in which material accumulates at the interface between two pha
- These phases can be any of the following combinations: liquid-liquid, liquid-solid, gas-liquid and
- The most efficient equipment for adsorption is the continuous plug flow configuration known as fixed hed



3. Theoretical fundamentals for the model

- $General\,assumption: Isothermal\,gas\text{-}solid\,phase\,adsorption, radial\,gradients\,are\,neglicted\,assumption. Isothermal\,gas\text{-}solid\,phase\,adsorption, radial\,gradients\,are\,neglicted\,assumption. Isothermal\,gas\text{-}solid\,phase\,adsorption, radial\,gradients\,are\,neglicted\,assumption. Isothermal\,gas\text{-}solid\,phase\,adsorption, radial\,gradients\,are\,neglicted\,assumption. Isothermal\,gas\text{-}solid\,phase\,adsorption, radial\,gradients\,are\,neglicted\,assumption, radial\,g$
- General mass balance equation for an infinitesimal element of the fixed bed can be described with a partial differential equation.

Further Assumptions / Simplifications

- \bullet Constant gas velocity (v=const.) This assumption can be made because the adsorbate concentration is much smaller than the total gas flow
- Negligible axial dispersion ($D_L = 0$) The mass balance equation is reduced to:
- Linear driving force (LDF) model Used to represent mass transfer in adsorption systems

$$\frac{(vc)}{z} \quad v \frac{c}{z} \quad c \frac{v}{z} \quad v \frac{c}{z}$$

$$v \frac{c}{z} \quad \frac{c}{t} \quad (\frac{1}{\varepsilon}) \frac{\bar{q}}{t} \quad 0$$

$$\frac{\bar{q}}{t}$$
 k(q^{*} q)

Solution of differential equation:

c
$$\frac{1}{2}$$
c₀[1 erf($\sqrt{\tau}$ $\sqrt{\xi}$ $\frac{1}{8\sqrt{\tau}}$ $\frac{1}{8\sqrt{\xi}}$)]

with

$$\xi \frac{\mathsf{kKz}}{\mathsf{u}}(\frac{1}{\varepsilon})$$

$$\tau \quad k(t \quad \frac{z}{v})$$

Solid Phase Loading Approximation

- Purifier tube is divided into 20 elements averagely.
- All the elements are considered to be homogenous.
- Mass which disappears from the gasflow will be adsorbed by the adsorbent
- The mass balance equation for solid phase is

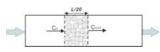


Fig.4 Principle of adsorbent loading calculation

$$V_a q Q(c_n c_{n-1}) t$$

4. Software Development

- After the theoretical investigation, concentrations and loadings versus time and position has been plotted in the programm Microsoft Exel $^{\text{TM}}$.
- The model determines the effluent adsorbate concentration and approximate adsorbent loading at different time and position along the purifier tube.

Fig.5 Input sheet

5. Results of parameter variations

In order to determine which effect a parameter has on the breakthrough curve, a sensitivity analysis by using the calculation tool was carried out

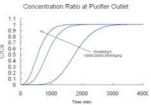
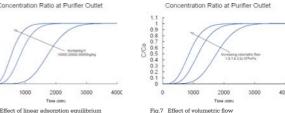



Fig.6 Effect of linear adsorption equilibrium

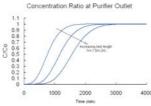


Fig.8 Effect of purifier length

Results for:

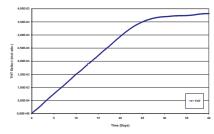
- smaller purifier length: the breakthrough curve is
- higher flow rate: the breakthrough time is shorter
- larger linear adsorption equilibrium constant K: the outlet adsorbate concentration increases more

Conclusions and perspectives

- $A generalized \ adsorption \ system \ has been \ studied, with the aim \ of getting \ up\ a \ mathematical \ model \ which \ can \ provide \ a \ predication \ of \ adsorption \ behaviour \ on \ theoretical \ basis.$
- Modelling and simulation of adsorption phenomena have been done under a certain set of simplifying assumptions.
- Although such simple systems are not common in practice, their analysis can provide useful information about the behaviour of more complex systems.
- The tasks of future work are:
 - determination of input parameters
- measurement of input values from real adsorbent material
- integration of co-adsorption phenomena if relevant (extensive measurements required)
 comparison of simulation with realistic desulphurisation behaviour

7. Sulphur analysis

- Precise gas analysis is available which is required to identify traces.
- An extremely sensitive Total-Sulphur-Analyzer (TSA) as well as a gas-chromatograph (GC) with atom-emission-detector (AED) can be utilized for a wide range of experimental investigations.
- With these analysis measurements related to desulphurization or sulphur tolerance of catalysts can be performed.


Fig.9 GC-MSD/AED with Loop Filling Manag

8. Testing of catalysts and desulphurization materials

- A fundamental requirement for catalyst utilization in reforming and fuel cell technology is the
- The degradation is influenced by the exposure to contaminants like sulphur.
- Degradation mechanism and velocity are known insufficiently.
- In the test facilities of the modern laboratories of ZBT the influence of specific components can be determined.

(10.5 ppm THT in the inlet side)

9. Outlook

- Currently catalysts for the process steps and desulpurization materials are investigated at automated test facilities at ZBT in close co-operation with partners from industry and catalyst suppliers.
- The experimental investigastions are the basis for the evaluation of performance, life time and for designing reactors.

