Zentrum für BrennstoffzellenTechnik GmbH

ZBT GmbH Carl-Benz-Straße 201 47057 Duisburg Germany

Telefon: +49-203-7598 0 Telefax: +49-203-7598 2222

www.zbt-duisburg.de info@zbt-duisburg.de

Vortragsinhalt

- Kurzvorstellung ZBT und Abteilung Gasprozesstechnik
- Reformersysteme in Brennstoffzellenanwendungen
- Entwicklungsmethodik von Reformersystemen
- CHP-Reformersystem auf Erdgas-Basis
- APU-Reformersystem auf Flüssiggas-Basis
- Aktuelle Entwicklungsschwerpunkte

Kurzvorstellung: Zentrum für BrennstoffzellenTechnik GmbH

Förderphase 2001 – 2006

- ➤ Bewilligungsbescheid: 5,2 Mio. € für den Neubau und 11,1 Mio. € für Investition und Betrieb
- Einzug und Einrichtung des Neubaus ab Oktober 2003
- Aufbau der Abteilungen Gasprozesstechnik und Brennstoffzellen- und Systemtechnik
- Aufbau der Abteilung Elektrochemie und Schichttechnik ab 2005

Förderphase 2007 – 2008

- ➤ Bewilligungsbescheid 10,6 Mio. € für Investitionen und Neubau und 5 Mio. € für Betrieb
- Aufbau der neuen Abteilungen Wasserstofftechnik und Mikrosysteme
- Neubau des TAZ-Gebäudes mit den Abteilungen Fertigung, Assemblierung und Automatisierung und Test und Qualifizierung

Project supported by the European Funds for Regional Development and the Region of Nort Rhine-Westphalia, Germany

Kurzvorstellung: Abteilung Gasprozesstechnik

Eckdaten

- 14 wissenschaftliche Mitarbeiter
- 4 technische Mitarbeiter
- 5-10 Studenten
- 20 automatisierte Teststände
- Analytiklabor
- professionelle Softwaretools

Stationäre Reformersysteme

- Reformersystem-Entwicklung
- Bauteil-Entwicklung

C. Spitta

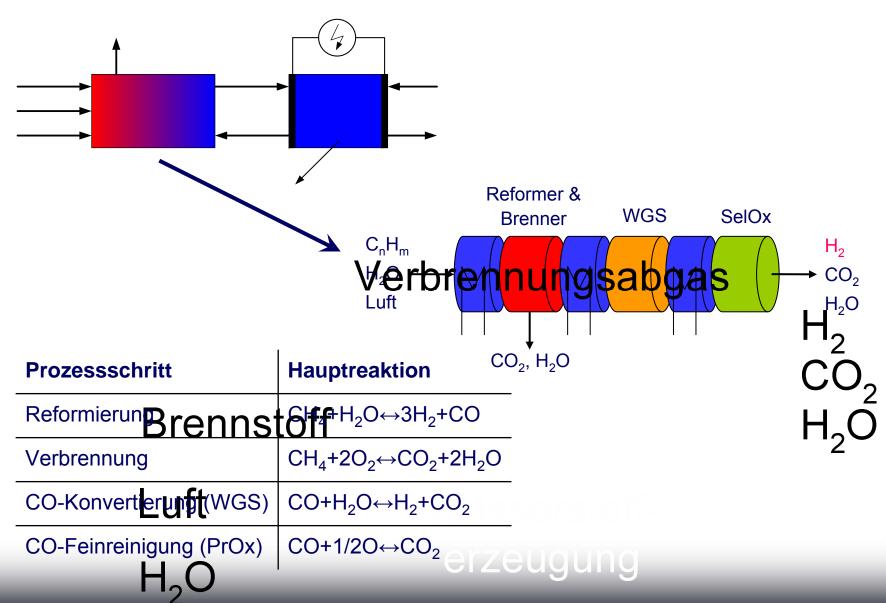
Mobile Reformersysteme

- Reformersystem-Entwicklung
- Bauteil-Entwicklung
- Gesamtsystem-Entwicklung

R. Witzany

Analytik

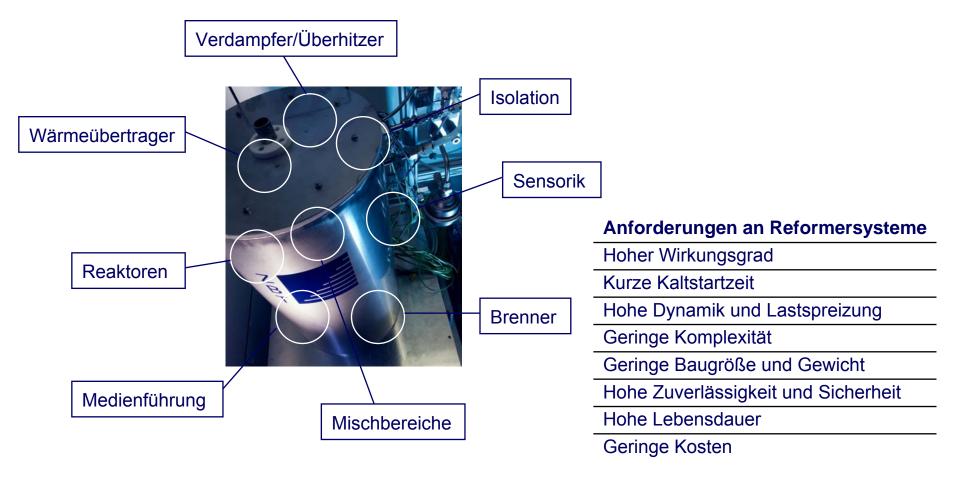
- Aufgaben der Gas- und Flüssiganalyse
- Entschwefelung von Erdgas und Flüssiggas
- Katalysatorqualifizierung mit Sondergasen



M. Steffen

Katalysatoren

- Screenings zur Qualifizierung und Benchmarking
- Kinetikuntersuchungen
- Stabilitätsuntersuchungen

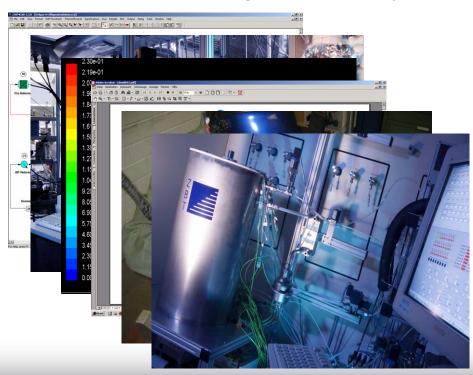

Reformersysteme in Brennstoffzellenanwendungen

Reformersysteme in Brennstoffzellenanwendungen

Bauteile eines Reformersystems

Methodik der Entwicklung von Reformersystemen

Europas größter einzügiger Dampfreformer der Raffinerie der Firma Neste Oil Oy in Porvoo, Finnland, mit einer Kapazität von 153.500 Nm³/h (Quelle: Uhde GmbH)



Kompaktes, hochintegriertes Reformersystem mit einer Wasserstoffproduktion von 0,4 Nm³/h (Quelle: ZBT GmbH)

Methodik der Entwicklung von Reformersystemen

- Basic Engineering (u.a. Aspen Plus®)
- Qualifizierung von Katalysatoren (Katalysator-Teststände und Analytiklabor)
- ➤ Detail Engineering (u.a. Fluent®, MATLAB®/Simulink®)
- 3D-CAD-Modellierung und -Konstruktion (u.a. Pro/ENGINEER®)
- Fertigung und Zusammenbau (Mechanische Werkstatt / Abt. Fertigungstechnik)
- Test und Qualifizierung (Reaktor-, System- und Prototyp-Teststände)

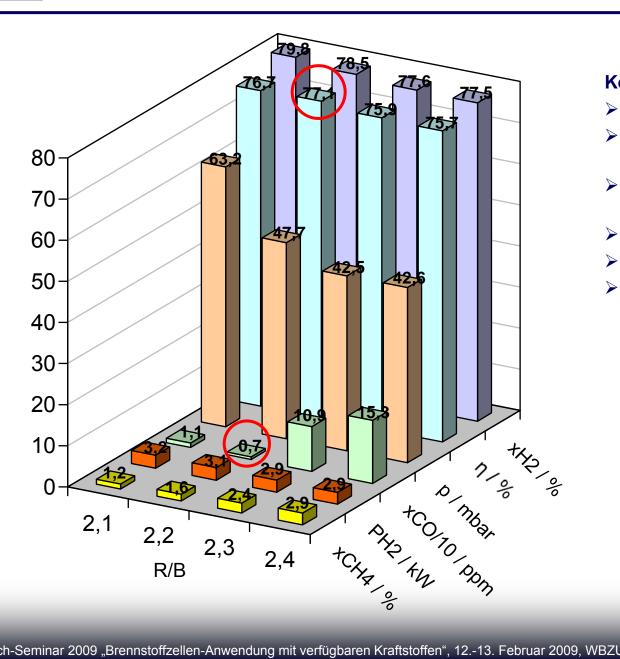
CHP-Reformersystem auf Erdgas-Basis

Brennstoff	Erdgas
Reformierungsart / S/C	Dampfreformierung / 3,0-3,5
CO-Konvertierung	1-stufig, temperiert
CO-Feinreinigung / O/CO	SelOx 1-stufig / 3,5
Brennerart / Multigas	Flammbrenner / ja
Integration	ohne SelOx
Katalysatoren / -träger (SR/WGS)	Nichtedelmetall / Formkörper
Katalysatoren / -träger (SelOx)	Edelmetall / Formkörper
Nennleistung (H2 thermisch)	2,5 15 kW
Lastspreizung	1:4
Kaltstartzeit / Medium	< 45 Minuten / Varianten
Volumen / Gewicht	40 I / 25 kg (3 kW-System)

CHP-Reformersystem: Methodik der Qualifizierung

1. Parameter-Screening (Methanbetrieb von Reformer und Brenner)

- √ S/C-Variation (Steam to Carbon)
- √ R/B-Variation (Reformerleistung/Brennerleistung)
- ✓ Lastvariation
- ⇒ Systembewertung und erste Festlegung der Betriebsparameter anhand von Wirkungsgrad und Wasserstoffleistung sowie restriktiven Randbedingungen, wie z.B. Bauteiltemperaturen, CO-Austrittskonzentration und Druckverlust

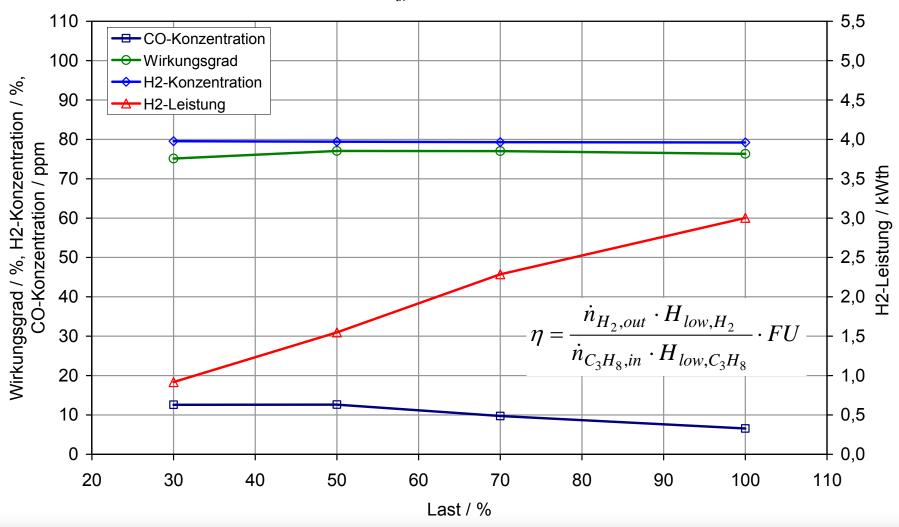

2. Betriebsoptimierung (Erdgasbetrieb von Reformer und Brenner)

- ✓ Betrieb mit festgelegten Parametern aus 1.
- ✓ Variation in geringer Bandbreite um Betriebsparameter aus 1.
- ⇒ Festlegung der optimalen Betriebsparameter

3. Betriebsoptimierung (Erdgasbetrieb von Reformer und Brennerbetrieb mit synthetischem AOG und Erdgas)

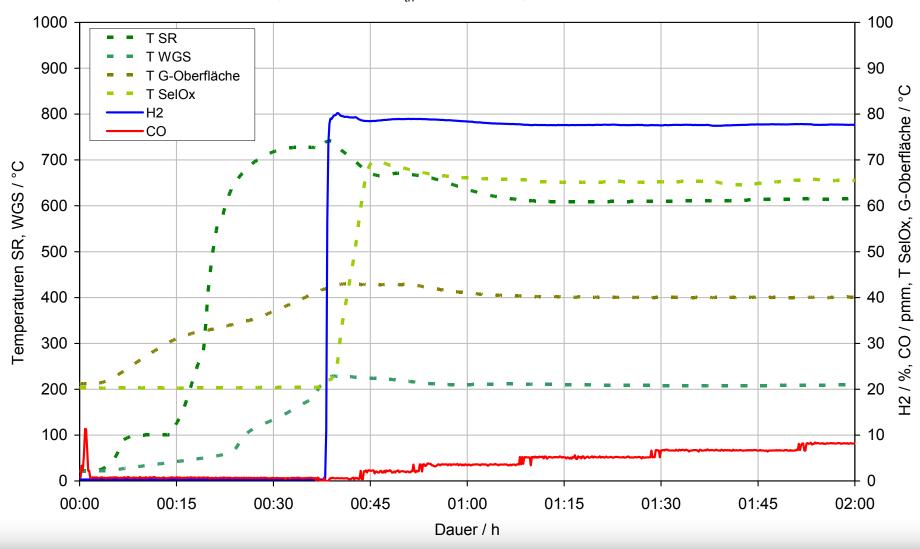
- ✓ Betrieb mit festgelegten Parametern aus 2.
- ✓ Variation in geringer Bandbreite um Betriebsparameter aus 2.
- ⇒ Festlegung der optimalen Betriebsparameter

CHP-Reformersystem: Beispiel R/B-Variation bei Nennleistung



Konstante Parameter

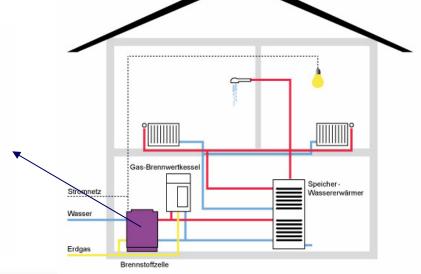
- Nennleistung
- Methan-Betrieb von Reformer und Brenner
- konstanter Methan-Massenstrom Reformer
- S/C = 3.25
- Lambda Brenner = 1,1
- Lambda SelOx = 3,5


CHP-Reformersystem: Leistungsdiagramm

Reformersystem mit 3 kW_{th}-Nennleistung, Methan-Betrieb, S/C=3,5

CHP-Reformersystem: Startup

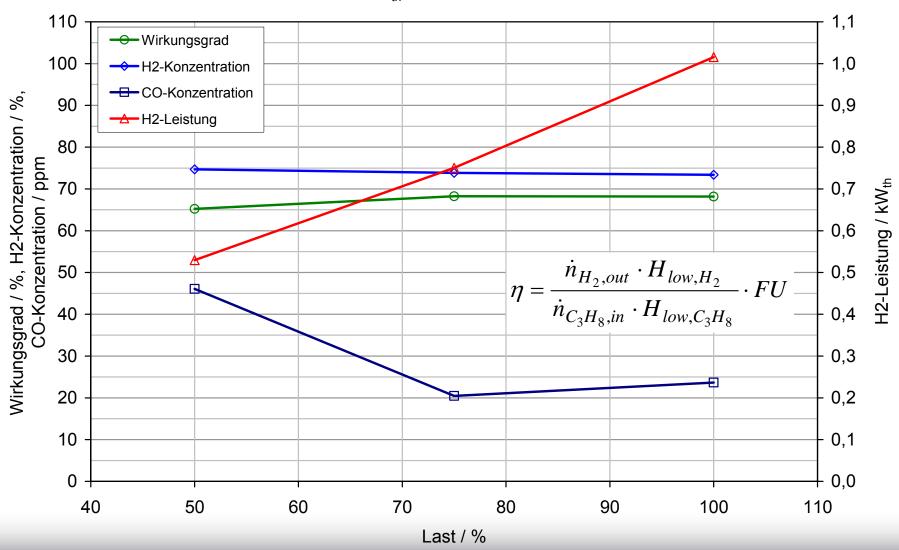
Reformersystem mit 3 kW_{th}-Nennleistung, Methan-Betrieb, S/C=3,5



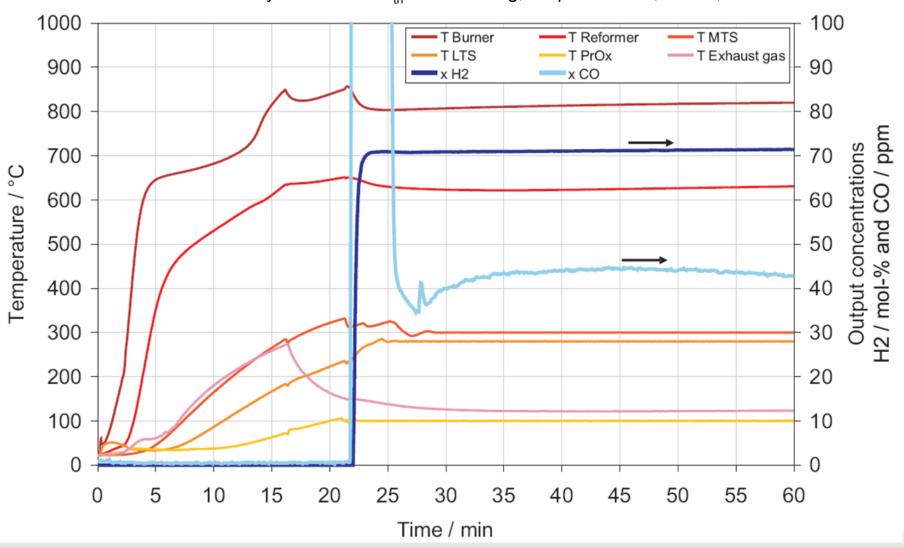
CHP-Reformersystem: Applikationen

Einsatzbedingungen	stationärer Einsatz Indoor/Outdoor
Anwendungsgebiete	Brennstoffzellenheizgeräte für Hausenergieversorgung, stationäre Wasserstofferzeugung,
Brennstoff	Erdgas
Versorgung	Leitungsnetz
Elektrische Nennleistung	1 - 5 kW
Strom- / Wärmenutzung	ja / ja
Elektrische Anbindung	Netzeinspeisung

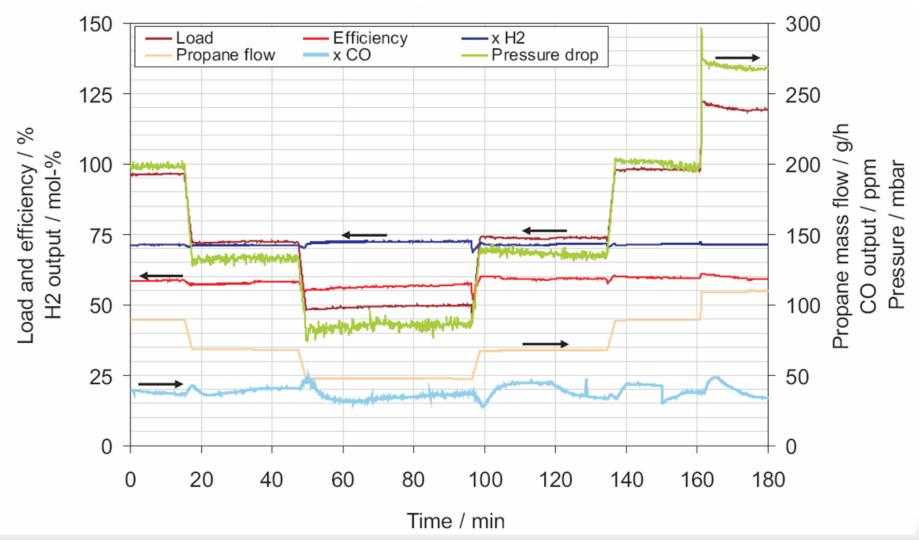
Quelle: Initiative Brennstoffzelle IBZ


APU-Reformersystem auf Flüssiggas-Basis

Brennstoff	Flüssiggas
Reformierungsart / S/C	Dampfreformierung / 3,0-3,5
CO-Konvertierung	2-stufig, adiabat
CO-Feinreinigung / Lambda	SelOx 1-stufig / 2,5
Brennerart / Multigas	katalytisch / ja
Integration	vollständig
Katalysatoren / -träger	Edelmetall / Monolith
Nennleistung (H2 thermisch)	1 kW
Lastspreizung	1:2
Kaltstartzeit / Medium	30 Minuten / Luft/Wasser
Volumen / Gewicht	8 I / 7 kg


APU-Reformersystem: Leistungsdiagramm

Reformersystem mit 1 kW_{th}-Nennleistung, Propan-Betrieb, S/C=3,3


APU-Reformersystem: Startup

APU-Reformersystem: Transientes Verhalten

APU-Reformersystem: Applikationen

Einsatzbedingungen	mobiler/portabler Einsatz
Anwendungsgebiete	APU für Freizeitanwendungen, Verkehrstechnik, Offgrid-Anwendungen,
Brennstoff	Flüssiggas
Versorgung	Flasche / Tank
Elektrische Nennleistung	0,3 - 1 kW
Strom- / Wärmenutzung	ja / nein
Elektrische Anbindung	Akkumulator

Aktuelle Entwicklungsschwerpunkte

Welche Entwicklungen am Reformersystem sind zeitnah erforderlich?

Übergeordnete Ziele für kommerzielle Anwendung

- Erhöhung der Zuverlässigkeit
- Erhöhung der Lebensdauer
- Reduktion der Systemkomplexität
- Kostenreduktion

Konkrete FuE-Themen zur Optimierung von Reformersystemen

- Optimierung von Werkstoff, Fügeverfahren und Konstruktion
- System- und betriebsspezifische Qualifizierung der Katalysator-Langzeitstabilität
- Optimierung des Reformersystems für Einsatz der HT-PEM-Brennstoffzelle (HT-PEFC)
- Analyse und Reduzierung der Nebenproduktbildung der Katalysatoren, z.B. Ammoniak-Bildung

Zentrum für BrennstoffzellenTechnik GmbH

ZBT GmbH Carl-Benz-Straße 201 47057 Duisburg Germany

Telefon: +49-203-7598 0 Telefax: +49-203-7598 2222

www.zbt-duisburg.de info@zbt-duisburg.de