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Simulating the electrical subsystem
The following plots do show various quantities related to the electrical subsystem. Conservation of charge
needs to be solved for electrical and ionic phase potential.
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membrane respectively. In the meantime, water either in vapor or liquid phase is produced depending on
the local operating conditions. Besides, heat is produced due to strong exothermic reaction when electrical
power is drawn using the external load.

Fig.4. Solid and ionic phase potential Fig.5. Reaction layer current density
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" H,/H,0, “ 2| To validate the model set-up, the simulations are compared to a life test investigation. All experimental
. 2 iInvestigations were run at ZBT facility (Fig.8) in a life test over a longer period of time using a commercially
IGaS diffusion Gas diffusion | - available MEA. As for the cell layout a channel-to-land ratio of 1/1 was used for the flow-field design. The
. : - i layer - Anode + | active area was 0.005 [m?2].
. o Operating conditions
Fig.1. ZBT standard low temperature Current g . Gases are feed at room temperature with a relative humidity of 10 [%] (hydrogen) and 40 [%] (air)
PEM fuel cell : current collector = respectively. To maintain self-humidification, the cell runs at a voltage of 0.65 [V]. The operating
_ S . Reactive - temperature is maintained at a temperature of 313.15 [K]. Fig.5. shows the comparison of the polarization
Assumptions and simplifications - layers . curves. The low current density results from the low cell voltage level and operating conditions and is
*ldeal gases behaviour o » —_t . predestined for such life test investigations. Now, back-diffusion of water in the membrane of the cell
*Two-dimensional sandwich model 450-10° [m] : overcomes the electro-osmotic drag resulting in a net water flux from cathode to anode
" .

«Constant, steady-state working conditions
*Single-phase considerations for water flow
Momentum equation reduced to Darcy’s law
*Homogeneous and isotropic material parameters
*No potential drop caused by contact resistances (i.e. constant electrical boundary potential)

Fig.2. 2D computational domain — 450-10-6 [m]
by 1-10-3 [m] divided into five subdomains

About fuel cell modeling

Fuel cell modeling is solving for all conservation equations coupled with electrochemical, empirical
equations and material parameters. Conservation laws are generally represented by the following general
partially differential equation
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*The electrical subsystem is the backbone of the given
model set-up. In fact, the quantity j in provides a strong

*By solving the model sequentially fundamental
data are delivered for the remaining
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Numerical methods

COMSOL Multiphysics (FEMLAB) is
used to solve for this model. The
modeling domain is discretized using
a finite element method (FEM). The
resulting base mesh consists of
5,406 triangular elements with a two
local refinements as can be seen in
Fig.2. The extended mesh consisted
of 58,820 degrees of freedom

[ Charge conservation

Material properties
Thermodynamics
Hydrodynamics
Two-phase flow
Mechanical properties
Data from experimental

Momentum,
species,
mass conservation

(minimum element quality 0.6873). : Investigations
The model is solved in stages using [ Energy conservation

a robust UMFPack direct solver. ‘ ol solver
Owing to the strong nonlinearity of Convergence? settings
the charge conservation, one has to If necessary
solve this equation first in order to _,update

use the solution as an initial guess
for the next step.
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[ Data postprocessing ]

Fig.3. Sequentially solution procedure

A grid-independence test is carried out and showed that there is no notable difference in quantities
behaviour. For the standard case (single phase calculations), the solution time was around 3,000 seconds
on a Windows PC platform (1GBRAM) to obtain a converged solution within 76 iteration steps. Solving for

Authors : Dipl.-Ing. Christian Siegel, Zentrum fir BrennstoffzellenTechnik (ZBT) gGmbH, Carl-Benz-Stral3e
201, D-47057 Duisburg, Deutschland, E-mail: c.siegel@zbt-duisburg.de;

two-phase flow (see Fig.7) dramatically increases the complexity of the equation system and 279 iterations
are needed for a converged solution. In order to get more stability into the highly nonlinear equation
system, non-ideal constrains are used for the membrane water transport equation and for pore saturation
calculations.

Dipl.-Ing. George Bandlamudi, Zentrum fur BrennstoffzellenTechnik (ZBT) gGmbH, Carl-Benz-Stral3e 201,
D-47057 Duisburg, Deutschland, E-mail: g.bandlamudi@zbt-duisburg.de; Prof’in. Dr. rer. nat. Angelika
Heinzel, Zentrum fur BrennstoffzellenTechnik (ZBT) gGmbH, Carl-Benz-Stral3e 201, D-47057 Duisburg,
Deutschland, E-mail: a.heinzel@zbt-duisburg.de; Universitat Duisburg-Essen, Fakultat ftr
Ingenieurwissenschatften, Institut fir Energie- und Umweltverfahrenstechnik, Lotharstr. 1, D-47048
Duisburg, Deutschland, E-mail: angelika.heinzel@uni-due.de.



